Journal of Indian Society of Periodontology
Journal of Indian Society of Periodontology
Home | About JISP | Search | Accepted articles | Online Early | Current Issue | Archives | Instructions | SubmissionSubscribeLogin 
Users Online: 890  Home Print this page Email this page Small font size Default font size Increase font sizeWide layoutNarrow layoutFull screen layout
Year : 2013  |  Volume : 17  |  Issue : 6  |  Page : 777-783

3D finite element analysis of immediate loading of single wide versus double implants for replacing mandibular molar

1 Department of Periodontology and Implantology, H. K. E. Society's S. Nijalingappa Institute of Dental Sciences and Research, Chennai, Tamil Nadu, India
2 Department of Periodontology and Implantology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
3 Department of Periodontology and Implantology, Al Badar Rural Dental College and Hospital, Gulbarga, Karnataka, India

Correspondence Address:
Shrikar R Desai
Department of Periodontology and Implantology, H. K. E. Society's S. Nijalingappa Institute of Dental Sciences and Research, Sedam Road, Gulbarga - 585 105, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0972-124X.124504

Rights and Permissions

Purpose: The purpose of this finite element study was to compare the stresses, strains, and displacements of double versus single implant in immediate loading for replacing mandibular molar. Materials and Methods: Two 3D FEM (finite element method) models were made to simulate implant designs. The first model used 5-mm-wide diameter implant to support a single molar crown. The second model used 3.75-3.75 double implant design. Anisotropic properties were assigned to bone model. Each model was analyzed with single force magnitude (100 N) in vertical axis. Results: This FEM study suggested that micromotion can be controlled better for double implants compared to single wide-diameter implants. The Von Mises stress for double implant showed 74.44% stress reduction compared to that of 5-mm implant. The Von Mises elastic strain was reduced by 61% for double implant compared to 5-mm implant. Conclusion: Within the limitations of the study, when the mesiodistal space for artificial tooth is more than 12.5 mm, under immediate loading, the double implant support should be considered.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded335    
    Comments [Add]    

Recommend this journal